Received: September 2, 1976

¹⁹ F NMR SPECTRA OF MESOMERIC CARBANIONS GENERATED FROM POLYFLUORODIARYLACETONITRILES. THE ELECTRONIC EFFECT OF PERFLUOROALKYL GROUPS

V. M. VLASOV, O. V. ZAKHAROVA, G. G. YAKOBSON

Institute of organic Chemistry, Siberian Division of the Academy of Sciences, 630090, Novosibirsk (U.S.S.R.)

SUMMARY

¹⁹F NMR spectra of 1,2-dimethoxyethane solutions of Na- and Li-salts of polyfluorinated carbanions $[p-RC_6F_4C(CN)C_6F_4R'-p]Na^+$ (Li⁺) and of their neutral precursors $p-RC_6F_4CH(CN)C_6F_4R'-p/R =$ F or CF₃ and R' = CF₃, CF₂CF₃, CF(CF₃)₂ and C(CF₃)₃ / have been studied. The values of changes in the chemical shifts of fluorine atoms in the ring and in the side chain are practically the same when going from the precursor to carbanion with the perfluoroalkyl group being varied. This gave grounds to conclude that the electronic effect of the perfluoroalkyl groups is rather similar. The ¹⁹F NMR method has revealed no differences in the predominant mechanism of the negative charge distribution by these groups.

INTRODUCTION

As is known, in the case of benzotrifluorides either deshielding or shielding of the fluorine atoms of the CF_3 group is observed in the ¹⁹F NMR spectra of these compounds, depending on whether an electron-donor substituent is found in or an electron-acceptor substituent is introduced into the para-position I 1,2 I. This phenomenon is characteristic not only for benzotrifluorides, but also for benzyl- and naphthylmethyl fluorides, alicyclic, cyclic and bicyclic fluorides I 3 I. Though no convincing explanation of this phenomenon can be offered, in one of the studies the spectral behaviour of the fluorine atoms in substituted benzotrifluorides was attributed to the effect of negative hyperconjugation of the CF_3 group $I \ 1 \ J$. Later this point of view was subjected to criticism, since the effects of the substituent on the values of chemical shifts of the fluorine atoms in the CF_3 group in substituted benzotrifluorides are by an order of magnitude smaller than those for substituted fluorobenzenes and, hence, the contribution of the resonance structure of type (A) to the ground state of the molecule is not great $I \ 4 \ 3$.

At the same time in the above-cited article it was pointed out that checking of the role of the effect of negative hyperconjugation of the CF_3 group by various methods (including the NMR method) is more effective on models containing anions, since such models better approximate transition states in organic reactions. Thus, for enolate anions generated from polyfluorinated isobutenol and propenol ethers, deshielding of the fluorine atoms of the CF2 groups (10 ppm. downfield shift) is observed [5]. The study of Meisenheimer complexes containing CF3 group showed that in the case of the CF3 group being in para - position to the geminal node the signal of the fluorine atoms of this group in the ¹⁹F NMR spectrum is observed to be 0.27 ppm. downfield as compared to the location of the same signal in the ${}^{19}\mathrm{F}$ NMR spectrum for the case of the CF $_3$ group being in ortho-position to the geminal node [6]. Taking into consideration that in Meisenheimer complexes a larger portion of the negative charge is located on that carbon atom of the ring, which is in paraposition to the geminal node I 7 I, relative deshielding of the fluorine atoms of the CF3 group in the para-position is identical with the above-cited data concerning the behaviour of the same group in substituted benzotrifluorides and enolate anions. Previously we have also indicated deshielding of the fluorine atoms of the CF3 group to take place when passing from para-trifluoromethyl-substituted derivatives of polyfluorophenylmalonic acid, triarylmethanes and diarylacetonitriles over to the corresponding carbanions [3, 9].

RESULTS AND DISCUSSION

For checking the connection between deshielding of the fluorine atoms of the CF_3 group in the ${}^{19}F$ NMR spectra of carbanions and the effect of negative hyperconjugation of this group, we have undertaken spectral studies of two series of polyfluorinated diarylacetonit-riles and their salts of carbanions containing perfluoroalkyl groups in para-position.

In the choice of these series of compounds we were guided by the consideration that their study offered a possibility to compare changes in the values of chemical shifts of the fluorine d-atoms in perfluoroalkyl groups R_f and of the fluorine atoms in the CF₃ group when the R_f substituent in the other benzene ring is varied. If the mechanism of hyperconjugation of the CF₃ group is associated with the value of deshielding of the fluorine atoms in this group, then, as we go from compounds (I,V) containing only CF₃ groups over to compounds (II-IV, VI,-VIII) containing other perfluoroalkyl groups, changes must be observed in the values of chemical shifts of the fluorine d-atoms in the side chain. Investigation of the two types of salts of carbanions (Ia,b-VIIIa,b) makes possible a more reliable evaluation of the character of changes in the values of chemical shifts of the fluorine atoms.

The parameters of the ¹⁹F NMR spectra of the series of compounds (I-VIII), as well as of their Na- and Li-salts of carbanions (Ia,b-VIIIa,b) are given in Tables 1 and 2, where $\Delta \delta_{\rm F}$ stands for the shift of the signal of the corresponding fluorine atom in carbanion with respect to the same in the precursor. The ¹⁹F NMR spectra of compounds (II,IIb) and (VIII,VIIIb) are presented in Figs 1,2. Assignment of the signals of the fluorine atoms in compounds (I,Ia,b) and (V.Va) was carried out earlier in [9]. Assignment of the signals of the fluorine atoms in compounds (II, IIa,b-N,Na,b) and (VI,VIa,b-VIII,VIIIa,b) is carried out both on the

Compound			Chemi shifts	cal shift of fluor	s of fluo ine atoms	rine aton when g	ns 8 going fr	and om pre	cursor
No.	x	R _f	δ ² _F	Δδ ² _F	δ ^{2'} _F	Δδ ^{2'} _F	δ ³ _F	$\Delta \delta^3_{\rm F}$	$\delta_{\rm F}^{3'}$
I ^{**} Ia Ib II	H Na Li H	cF_3 cF_2cF_3	+ 25.5 + 15.0 + 15.5 + 15.5 + 25.8	*** -10.5 ***-10.0	$+23.6^{*}$ +21.5 +21.2 +23.6	-2.1 -2.4	+ 23. + 15. + 15. + 25.	,6 ,0-8,6 ,5-8,1 ,4	+ 2.1 -4.3** -3.6** + 2.1
IIa IIb	Na Li	1 6	+15.2 +15.6	-10.6 -10.2	+ 21.6 + 21.4	-2.0 -2.2	+ 16 + 16	1-9.3 6-8.8	-3.8** -3.5**
III	н	$CF(CF_3)$	2 + 26.1		+ 23.6		+ 28	• 4	+ 2.0
IIIa N	Na H	β C(CF ₃) ₃	+ 15.8 + 26.6	-10.3	+ 21.6 + 23.4	-2.0	+ 20 + 36	.0-8.4 .4	-4.0 ^{**} +1.8
Na	Na		+ 16.2	-10.4	+ 21.6	-1.8	+ 27	.1-9.3	-3,6**
1V D 	Ratio Chem calibi Becau chemi	of signal ical shift v ration (cf. use of sup ical shift v	+ 10.9 intensitie values ar [9]]. erposition alue is =	-9.7 es is co e estima n of sig t 0.7 pp	+ 21.8 rrect. ated with nals the	greater	+ 27 precision y of de	on by	-3,3

TUDDE T	ΤA	BL	Æ	1
---------	----	----	---	---

		19					
Parameters	of	1 F	NMR	spectra	of	compounds	type

**** chemical shift value is ± 0.7 ppm. Because of superposition of signals the accuracy of determining chemical shift value is ± 0.2 ppm. Because of superposition of signals the accuracy of determining

chemical shift value is ± 0.5 ppm.

basis of the values of chemical shifts of the fluorine atoms, of the relative intensity of the signals, and with the use of the spin-spin coupling constants of the fluorine atoms. Assignment of the signals of the fluorine atoms F_3 , and F_4 , in compounds (II, IIa, b - IV, Na, b) is similar to the assignment of the same signals in compounds (I, Ia, b) I 9 I.Assignment of the signals of the fluorine atoms F_3 , in compounds (VI, VIa, b - VIII, VIIIa, b) is carried out due to a considerable complication of the fine structure of these signals because of the spin-spin coupling of the fluorine atoms F_3 , and CF_3 group (J($CF_3 - F_3$) 20.5 - 23 Hz), (cf. **I** 10 **I**)

$$\mathbb{R}_{i} \underbrace{\left(\begin{array}{c} \mathbf{F} \\ \mathbf{S} \end{array}\right)}_{2} \mathbb{C}_{\mathrm{CN}} \underbrace{\left(\begin{array}{c} \mathbf{F} \\ \mathbf{S} \end{array}\right)}_{2'} \mathbf{4'} \qquad (\mathbf{I}, \mathbf{I})$$

(I,Ia,b- N,Na,b)

chai to c	nges in arbanio	values n <u>(</u>	of ch	emical			Absolute values of spin- spin
Δδ ^{3'}	δ4' F	Δδ ⁴ ' _F	δ ^d _R	مە ^م	δ^{β}_{R}	Δδ ^β _R	coupling constants, J(F-F) (Hz)
-6.4 -5.7	+ 11.0 -4.3*** -3.6***) **_15.3 **_14.6	+ 107. + 110. + 110.	2 2 + 3.0 3 + 3.1		-	
	+ 10.9		+ 52.8		+ 77 . 6		$J(d, 3) 31.7; J(\beta, 3) 6; J(d, \beta) 2.2; J(2', 4') 3.5; J(d, \beta) 2.1 4$
-5.9 -5.6	-3.8 ^{**} -3.5 ^{**}	* -14.7 * -14.4	+55.4 +55.1	+2.6 +2.3	+77.2 +77.1	-0.4 -0.5	J(d, 3) 29 $J(d, 3) 29; J(d, \beta) 3. 3;$ $J(\beta, 3) 7$
	+10.9	9	-14.3	3	+ 88,4		$ \begin{array}{c} J(d,3) 46.5; J(\beta,3) 13.5; \\ J(d,\beta) 5.8; J(2',4') 3; \\ J(3',4') 21.2 \end{array} $
-6.0	-4.0**	*-14.9	-11.4	1 + 2.9	+87.9	-0.5	
	+10.7	,	ans.		+ 102.7		J (β,3) 26.4; J (2',4') 3.5; J (2',3') 20.7
-5.4	-3.6	-14.3	-	-	+101.5	-1,2	
-5.1	-3.3	-14.0	-	-	+ 102.0	-0.7	$J(\beta, 3) 25.7;$ J(2, 3) 14.5

the values of the chemical shifts of the fluorine atoms F_{3^i} being close to those in compounds (V, Va, b) respectively. Similarly, complication of the fine structure of the signal of the fluorine atoms F_3 in compounds (II, IIa, b - IV, IVa, b, VIa, b, VII, VIIb, VIII, VIIIa, b) together with the growth in the value of the spin-spin coupling constant J (R - F_3) to 26-46 Hz (cf. I 11-12 I) facilitates the assignment of these signals. The signals of the fluorine atoms F_2 and F_2 , in the both series of compounds were assigned as follows: in compounds (II - IV, IVa, b, VIIIb) the assignment was conducted in accordance with the spin-spin coupling constants $J(F_{2^i} - F_{4^i})$ and $J(F_2 - F_3)$; in carbanions (IIa, b) and (IIIa, b), as well as in compound (VIII), by comparing the values of chemical shifts of these fluorine atoms with the corresponding values in carbanions (Ia, b), (IVa, b) and in compounds (IV) and (V) respectively. In the case of compounds (VI, VIa,

TABLE 2

Parameters of ¹⁹F NMR spectra of compounds type

Comp	ound		Chemical shifts of fluorine atoms δ and shifts of fluorine atoms when going from						
No.	X R	f δ ² _F	${}_{{\pmb{\Delta}}} \delta^2_{{\bf F}}$	$\delta_{\rm F}^{2'}$	Δδ ^{2'} _F	δ3 F	δ ³ Έ	δ ^{3'} _F	
V Va Vb	H CF Na Li	3 + 25.9 + 19.5 + 19.9	-6.4 -6.0	+25.9 +19.5 +19.9	-6.4 -6.0	+ 23.6 + 16.1 + 16.5	-7.5 -7.1	+ 23.6 + 16.1 + 16.5	
VI	н с ⁴ ₂ с	F ₃ - 26.1	**	+ 26.1		+ 26.1		+ 23.6	
VIa	Na	+ 19.9*;	* - 6.2	+19.9	-6.2	+ 17.5	-8.6	+ 16.8	
VI b	Li	+ 20.0*'	-6.1	+ 20.0	-6.1	+ 18.0	-8.1	+16.7	
VII	H CF (CF	3) ₂ - 26.2	**	+26.2		+ 28,5		+ 23.8	
VIIa	Na	+ 20.1***	** -6.1	+20.1	-6.1	+ 20.1	-8.4	+16.5	
VIIb	Li	+ 20.2***	** -6.0	+20.2	-6.0	+ 21.1	-7.4	+16.8	
	β								
VIII	н с(сғ	3 ³ - 27.2	2	+ 25.8		+ 36.4		+ 23.7	
VIIIa VIIIb	Na Li	+ 20.4 + 20.9	-6.8 -6.3	+ 20.4 + 20.6	5.4 5.2	+ 28.2 + 28.9	-8.2 -7.5	+16.3 +16.8	
* ** **	Ratio of Because mining Because	signal in of super chemical s of super	tensitie positio shift va positio	n of sig n of sig lue is n of sig	orrect. gnals t ± 0.9 gnals t	he accur ppm. he accur	acy of acy of	deter-	
****	terminin Because	g chemica e of super	l shift position	value i n of sig	$s \pm 0.0$	6ppm. he accur	acy of	de-	

***** termining chemical shift value is ⁺0,5ppm. Because of poor resolution of signals the chemical shift value could not be determined accurately.

b, VII, VIIa, b) superposition of signals of the atoms F_2 and F_2 , or F_2 , F_2 , and F_3 is observed. Assignment of the signals of the fluorine atoms in the perfluoroalkyl groups R_f in compounds (II - N) and (VI - VIII) is unambiguous **L** 10-12 **J**.

$$R_{f} \xrightarrow{F} C_{N} C_{N} \xrightarrow{F} C_{N} C_{2'} \xrightarrow{F} C_{3'} (V, Va, b - VIII, VIIIa, b)$$

char prec	nges in th ursor to	Absolute values of spin-spin					
▲ \$ ^{3'} _F	δ _{CF3}	Δδ _{CF3}	δ ^d _R	ΔδR	δ ^β _R	$\Delta \delta_{\rm R}^{\beta}$	coupling constants, J(F - F)(Hz)
-7.5 -7.1	+107.1 +108.8 +108.6	+1.7 +1.5	+ 107.1 + 108.8 + 108.6	- +1.7 +1.5		-	J (d, 3)21.9 J(d, 3)21.2 J(d, 3)21.5
	+106.7		+ 52.7		+77.8		$J(CF_{3}, 3')22.8$ J(d, 3)31.7 $J(\beta, 3)6; J(d, \beta)2.2$
-6.8	+ 108.9	+.2.2	+ 54.7	+2.0	+77.3	-0.5	
- 6.9	+108.2	+1,5	+ 54.4	+1.7	+77.2	-0,6	J(CF ₃ ,3')20.5 J(d, 3)29.5
	+107.0		-14.5		+88.8		$J(CF_{3}, 3')22.2$ J(d, 3)44.5 $J(\beta, 3)13.5;$ $J(d, \beta)6$
-7.3	+109.0	+ 2.0	-12.5	+2.0	+ 87.9	-0.9	
-7.0	4109.1	+ 2 . 1	~12. 8	+1.7	` + 88.0	-0.8	J(CF ₃ ,3')21.0; J(d,3)39.5; J(β,3)12.5; J(d,β)6
	+106.7		-		+ 102.8		J(CF ₃ ,3')23.0; J(β,3)26.5
-7.4	+108.9	+2.2	-		+ 101.8	-1.0	
-6.9	+ 109.0	+ 2.3	-		+ 102.4	-0.4	J(CF ₃ ,3')21.5; J(β ,3)25.9; J(2,3)11.0

From the data concerning various reaction series it follows that the electronic effect of the perfluoroalkyl groups in the form of the Hammett G- constant is practically the same [13, 14]. This point of view is confirmed also by kinetic data for the nucleophilic substitution reaction in perfluoromonoalkyl- substituted derivatives of benzene [15]. The same result ensues likewise from the data concerning the equilibrium of the series of carbanions of the type $(p-RC_6F_4\overline{C}(CN)C_6F_5)Na^+$ with the use of the correlation equation $\Delta\delta_F^{4'} = -9.5 \, \delta_p + 20.7$ which relates the value $\Delta\delta_F$ for the paraatom of fluorine and the δ_p^{-} -constant of the substituent [9].From the fact that the values of $\Delta\delta_F^{4'}$ (Table 1) are close for all the

Fig. 1. ${}^{19}\mathrm{F}$ NMR spectra of a solution of the compounds (II) and (IIb) in DME,

perfluoroalkyl substituents in compounds (I - IV) it follows that the values of the σ_{r} -constants for these substituents are also close, though for the cF_3 group the value of f_p is somewhat smaller than for the rest of the perfluoroalkyl groups. If the change in the chemical shift of the para-atom of fluorine $\delta_{E}^{4'}$ is determined predominantly by the interaction of this fluorine atom with the carbanion substituent in the π -system, then practically the same values of $\Delta \delta_{r_{
m N}}^{2'}$ for the ortho-atoms of fluorine are also indicative of the same relative contribution of the interaction of this substituent with the ortho-atoms of fluorine in the π -system in the series of compounds (I - IV) (Table 1) [9]. Moreover, in this series of compounds similar changes in the values $\Delta \delta_{\rm F}^2$ are observed for the ortho-atoms of fluorine F_2 and also for the meta-atoms of fluorine $\Delta \delta_{F}^3$ and $\Delta \delta_{r}^{3'}$ (Table 1), this once again confirming the similarity of the electronic effect of the perfluoroalkyl groups. The fact that the absolute values of $\Delta \delta_{\rm F}^2$ and $\Delta \delta_{\rm F}^3$ are greater than those of $\Delta \delta_{\rm F}^{2'}$ and $\Delta \delta_{\mathcal{F}}^{3'}$ respectively is conditioned both by the presence of the electron-acceptor group R_f and, probably, by the conformational behaviour of the carbanions (cf. I 9 I).

In the series of compounds (V - VIII) close changes in the values of $\Delta \delta_{\rm F}^2$ and $\Delta \delta_{\rm F}^{2'}$ for the ortho-atoms of fluorine and of $\Delta \delta_{\rm CF_3}^3$ for the CF₃ group are observed, this also indicating that the electronic effect of the perfluoroalkyl groups is approximately the same. It should be noted that in this series of compounds somewhat greater values of $\Delta \delta_{\rm F}^3$ are observed as compared with the values of $\Delta \delta_{\rm F}^3$ for the meta-atoms of fluorine as one goes from compound (V) with the CF₃ group over to compounds (VI - VIII) containing other perfluoroalkyl groups. This fact is associated with a somewhat greater electronic effect of the perfluoroalkyl groups as compared to that of the CF₃ group, though the difference in the effects is small (cf. $E 13 \exists$).

It could be expected that, the electronic effect of all the perfluoroalkyl groups being similar, the differences in the delocalization mechanism of the negative charge by the CF_3 group and by the other perfluoroalkyl groups CF_2CF_3 , $CF(CF_3)_2$ and $C(CF_3)_3$ could be revealed by comparing the values of ΔS_F for the d- atoms of fluorine in the side chain in the series of compounds (I - IV). However, as it follows from the data presented in Table 1, the value of ΔS_F for the CF₃ group is very close to those for the groups CF_2CF_3 and $CF(CF_3)$. A similar comparison of the values of $\Delta \delta_F^2$ for the same groups in the series of compounds (V - VIII) (Table 2) gives the same result, though in the absolute value the deshielding effect diminishes as was pointed out earlier I9I. No differences in the spectral behaviour of the perfluoroalkyl groups can be revealed either when comparing the values of $\Delta \delta_F^\beta$ for the β -atoms of fluorine in these groups in the both series of compounds (Tables 1 and 2).

Thus, consideration of the $\Delta \delta_{\rm F}$ values both for the aromatically bonded fluorine atoms and for side chain fluorine atoms in the series of compounds (I - VIII) shows that no differences (if they exist!) in the negative charge delocalization mechanisms by the CF₃ group and by other perfluoroalkyl groups can be revealed by the ¹⁹F NMR method. No such differences have been revealed either when studying the kinetics of the reaction of nucleophilic substitution of the fluorine atom in pentafluoro- substituted benzene derivatives [15] and the kinetics of base-catalyzed deutero- exchange in 2-(para-R_fphenyl)-1.1.1.3.3.3-hexafluoropropanes [16].

Compounds (I - VIII) were obtained according to the scheme:

 $p-RC_{6}F_{4}CH_{2}CN \xrightarrow{NaH} [p-RC_{6}F_{4}CHCN] Na^{+} \xrightarrow{1.C_{6}F_{5}R_{f}(XI - XIV)} I - VIII$ $\frac{1.C_{6}F_{5}R_{f}(XI - XIV)}{2.H_{2}O, HCI} I - VIII$ $R = F(IX), CF_{3}(X)$ $R_{f} = CF_{3}(XI), CF_{2}CF_{3}(XII), CF(CF_{3})_{2}(XIII), C(CF_{3})_{3}(XIV)$

EXPERIMENTAL

 19 F NMR spectra have been recorded on a "Varian A56-60A" spectrometer at 56.4 MHz with a 10 mol. % DME solution (hexa-fluorobenzene as an internal standart), measuring accuracy of $^{+}$ 0.1 ppm. and precision of chemical shifts of $^{+}$ 0.2 ppm.

Compounds (I), (V) and (X) were prepared by following the procedure described in $I 9 \exists$, compound (IX) was prepared by following the same procedure as in $I 17 \exists$, compound (XII) was pre-

ო	
FABLE	

Synthesis of polyfluorodiarylacetonitriles $p-R_f C_6 F_4 CH(CN) C_6 F_5$ (II - IV) and $p-R_f C_6 F_4 CH(CN) C_6 F_4 CF_3 - p$ (VI - VIII) by reacting polyfluorinated arylacetonitriles $p-R C_6 F_4 CH_2 CN$ (IX, X) with polyfluoroalkylbenzenes $C_6 F_5 R_f$ (XII - XIV) in the presence of sodium hydride in DMF

Elementary analysis	Found, % Formula Calculated, % C H F N C H F N	0.4 0.4 56.1 3.2 C ₁₆ HF ₁₄ N 40.3 0.2 56.3 3.0	9.0 traces 58.1 2.9 C ₁₇ HF ₁₆ N 39.0 0.2 58.2 2.7) 37.9 traces 59.5 2.4 C ₁₈ HF ₁₈ N 37.7 0.2 59.7 2.5	9.4 0.3 58.6 2.9 C ₁₇ HF ₁₆ N 39.0 0.2 58.2 2.7	17.4 traces 59.6 2.6 C ₁₈ HF ₁₈ N 37.7 0.2 59.7 2.5	16.5 0.1 60.9 2.4 C ₁₉ HF ₂₀ N 36.6 0.2 61.0 2.3
Reaction products	teld, B.p. M.p.(sol- % (mm Hg) vent for crystalli- zation)	14 165-166 ⁰ - 4	(4) 56-58 ⁰ 3 (petroleum ether with	20 b.p. $40-60^{\circ}$ 20 - 82-84°(pet- 3 roleum ether with b.p. 40-60°)	$18 168 \cdot 170^{\circ} - 3 \\ (4) (4)$	24 - 114-115 ^{0 3} (EtOH)	19 - 146-148 ⁰ 3 (EtOH)
ial compounds	P-R- R _f in No Yi CH ₂ CN C _{6 F5} R _f) CF_2CF_3 II 4) $CF(CF_3)_2$ III (XIII) (XIII)) $C(CF_3)_3$ IV : (XIV)	$ \begin{array}{c} x \end{pmatrix} c F_2 c F_3 v i \vdots \\ (x i i) (x i i) \end{array} $	$ \begin{array}{c} \text{CF}(\text{CF}_3)_2 \\ \text{(XIII)} \end{array} $	x) $C(CF_3)_3$ VIII (XIV)
Init	C6F4	F (IX	F (IX	F (IX	сғ ₃ (:	СF ₃ ()	сғ ₃ (:

pared by following the procedure described in E 18 J, compound (XIII) was prepared by following the procedure in E 11 J,and compound (XIV), by following the procedure described in E 12 J. Purification of the DMF and DME solvents and generation of the salts of carbanions (Ia, b - VIII) were carried out by following the procedures described in E 9 J.

Synthesis of polyfluorodiarylacetonitriles (II - IV, VI - VIII) (nc)

Synthesis of polyfluorodiarylacetonitriles (II - N, VI - VIII) was conducted by following the procedure described in I 9 I. To a suspension of 0.013 mol. NaH in 20 ml of DMF 0.013 mol. of polyfluoroalkylbenzene (XII - XIV) in a stream of dry nitrogen were added. Then 0.0086 mol. of compound (IX) or (X) was added gradually at 20-25° during 30 min. Then the reaction mixture was kept at the same temperature for 3 hours and neutralized with a 5% HCI solution. After that extraction with ether was performed, the extract was washed with water and dried with MgSO₄. The product was isolated by distillation. The results of the experiments and data of the elementary analysis are given in Table 3.

REFERENCES

- 1 C.L. Bumgardner, J. Org. Chem. 28 (1963) 3225.
- 2 W.A. Sheppard, J. Am. Chem. Soc., <u>87</u> (1965) 2410.
- 3 W. Adcock, M.J.S. Dewar, R. Golden, M. A. Zeb, J. Am. Chem. Soc., <u>97</u> (1975) 2198 and references therein.
- D. Holtz, in "Progress in Physical Organic Chemistry", ed.
 by A. Streitwieser, Jr., R. W. Taft, <u>8</u>(1971) 1.
- J. L. Knunyants, M.V. Urushadze, V. A. Livshits, Yo. G. Abduganiev, E. M. Rokhlin, Yu. A. Cheburkov, Izvest. Akad. Nauk.
 S.S.S.R. Chem. Series, (1972) 54; M.V. Urushadze, Yo.G.
 Abduganiev, E. M. Rokhlin, I.L. Knunyants, Izvest. Akad.
 Nauk S.S.S.R. Chem. Series, (1972) 1347; M.V. Urushadze,
 P. O. Okulevich, E. M. Rokhlin, I. L. Knunyants, Izvest. Akad.
 Nauk S.S.S.R. Chem. Series, (1974) 722.
- 6 M.I. Foreman, R. Foster, Can. J. Chem., <u>47</u> (1969) 729.
- 7 M.J. Strauss, Chem. Revs., 70 (1970) 667.

- 8 V. M. Vlasov, O. V. Zakharova, Zhur. Org. Khim., <u>11</u> (1975)
 785; V. M. Vlasov, G. G. Yakobson, Zhur. Org. Khim., <u>12</u> (1976) 255.
- 9 V. M. Vlasov, O. V. Zakharova, G. G. Yakobson, Izvest. Sibirskogo Otdeleniya Akad. Nauk S.S.S.R. Chem. Series, N14 (1975) 80.
- 10 F.A.M. Ayanbadejo, Spectrochimica Acta, <u>25A</u> (1969) 1009.
- 11 R.D. Chambers, J.A. Jackson, W.K.R. Musgrave, R.A. Storey, J. Chem. Soc.(C), (1968) 2221.
- 12 N.I. Delyagina, E.Ya. Pervova, B.L. Dyatkin, I.L. Knunyants, Zhur. Org. Khim., <u>8</u> (1972) 851.
- 13 L. M. Yagupolskii, A. Ya. Ilchenko, N. V. Kondratenko, Uspekhi Khim., 43 (1974) 64.
- W.A. Sheppard, C.M. Sharts,"Organic Fluorine Chemistry", W.A. Benjamin, Inc., 1969, p. 37.
- 15 R.D. Chambers, J.S. Waterhous, D.L.H. Williams, Tetrahedron Letters, (1974) 743.
- 16 K.J. Klabunde, D.J. Burton, J. Am. Chem. Soc., <u>94</u> (1972) 820.
- 17 R. Filler, S. M. Woods, A. F. Freudenthal, J. Org. Chem., <u>38</u> (1973) 811.
- 18 B.G. Oksenenko, V. A. Sokolenko, V. M. Vlasov, G.G. Yakobson, Izvest. Sibirskogo Otdeleniya Akad. Nauk S.S.S.R. Chem. Series, N2 (1970) 102.